new course

Higher Diploma in Science in Data Analytics (Full-Time)

Course Points
Course Duration
1 Year
Course Level
Level 8
Course Start Date
28th September 2020

Four great reasons to consider this course

  • This course is ideal for numerate graduates looking to enhance their skills and improve their employability in the field of Data Analytics.
  • It is delivered by highly qualified lecturers with significant professional experience.
  • Underpinned by concrete theories, this course provides real practical statistics and computing skills that can be used to solve business problems across a wide range of industries.
  • This course is delivered through a blended combination of online and onsite learning.

Course Summary

This one year full-time course (funded via Springboard+) will equip participants with the theoretical and practical skills to enter the world of data analytics. It will provide learners with the required skills in the areas of statistics, programming and databases that will enable them to transfer much of the domain specific knowledge/skill already gain in their primary degree(s) to the IT and Data Analytics sector.

Important notice about this course


  • This full-time one-year programme is currently funded via Springboard+. This programme is alos offered in part-time mode (see here) but Springboard+ funding is only available to full-time students.

This course is aimed at candidates with strong numeracy skills and a basic knowledge of statistics who wish to become more data savvy, no prior programming exposure is required. This one-year full-time course is funded via Springboard+ and is created for those who wish to develop the skills, expertise and knowledge to work as Data Analysts and is aligned with the needs of local data focused companies.

Modules on this programme include:

  • Statistics using R (10 credits): This is a year-long module which lays solid foundations in statistics, through R.
  • Spreadsheet Data Analytics (5 credits): This module focuses on the use of Excel for once off analysis of existing data sets.
  • Applied Database Systems (5 credits): Focuses on databases with large amounts of flat data as they appear in Big Data and Machine Learning
  • Ethics and Social Responsibility in Data Analytics: Provides students with an understanding of the moral considerations that are foundational in Data.
  • Advanced Statistics using R (10 credits): Focuses on non-parametric modelling, generalised linear models, and machine learning.
  • Real Time Data Analytics (5 credits): Applying data analytics techniques on real-time data or data streaming with minimal latency.
  • Research Methods for Data Analytics (5 credits): Introduces students to good research practice and prepares them to conduct their industry project.
  • Data Visualisation (5 credits): Focuses on the effective use of visualisations to both understand data and communicate findings.
  • Data Analytics Project (10 credits): Students will undertake, with appropriate supervision, an industry related data-driven project.

This course is typically delivered using a blended approach. Classes normally run on Monday and Wednesday evenings 6:00pm to 9:00pm and on alternative Saturday mornings over two semesters.

The course provides the necessary preparation for a career in areas such as

  • Data Analyst;
  • Data Scientist;
  • Data Engineer;
  • Business Analytics Specialist;
  • Data Visualization Developer;
  • Analytics Manager

On the successful completion of this Higher Diploma, students who obtain Second Class Honours, or higher, will be eligible to be considered for entry to an MSc in Computing programme (taught or research). Future progression options available within DkIT will include the MSc in Data Analytics.  

The following are eligible to apply for courses in 2020/21 academic year (subject to the applicant meeting all requirements, e.g. academic requirements):

  • Returners: May apply to all courses if they meet the nationality/visa requirement and residency criteria.
  • People in employment: May apply to all courses if they meet the nationality/visa requirement and residency criteria.
  • The unemployed or formerly self-employed: All courses are open to these categories of applicants
  • Recent Graduates: One-year full-time and two-year part-time ICT Skills Conversion courses are open to recent graduates. However, to participate in an NFQ Level 9 (Post-Graduate) course, 2020 graduates will be required to pay 10% of the course fee (€602.70).

For more information of fees and eligibility criteria, please visit the Springboard+ Website. You may also contact Dr Tim McCormac for more information about Fees for this programme:

DkIT Graduate Office
Unit 13, Regional Development Centre


T. +353 (0)429370458

ANY Honours (Level 8) Degree with 15 credits of Mathematics


Statistics OR Level 7 Degree with 15 credits of Mathematics and/or Statistics AND at least 2 years of work experience together with strong numeracy skills.

No prior programming exposure is required.

Graduates with strong numerate skills who wish to pursue a career in the expanding area of Data Analytics.

Professionals who wish to develop their Data Analytics and Mining skills to apply them to real problems in their current work domains.

Graduates who enjoy Mathematics and problem-solving with a focus on real-world problems.

Graduates who are interested in developing their advanced statistical and computing skillsets to master areas such as statistical inference and machine learning.

Dr Kevin McDaid (Programme Director)
Phone: 042 9370200 Ext 2739

Dr Fiona Lawless (Head of Computing Science and Mathematics)
Phone: +353 42 9370200

Tim McCormac (Head of Research & Graduate Studies)
Phone: +353 (0)429370458

Course ID N/A
Course Type Springboard, Postgraduate
Study Mode Full-Time
Level 8
Duration 1 Year
Fees €602.70
Starting Date 28th September 2020
School School of Informatics & Creative Arts
Department Computing Science and Mathematics
Credits 60
Awarding Body Dundalk Institute of Technology
Apply to Dundalk Institute of Technology

How to Apply

You can enrol online for this course today via Springboard+ by clicking the button below and following the instructions to apply.


For further enquiries, please contact